Differential Equations - Study Guide

DIFFERENTIAL EQUATIONS COURSE TASK 0306 (33 pages)

1. First Order Differential Equations	Pg. 2
The Order / The Degree / Linear Definition.	-
2. Forming Ordinary Differential Equations	Pg. 3
Example 1: $y^2 = 6k(k - x)$	
Example 2: $y = A e^{-x} + B e^{-2x}$	
3. Boundary Conditions	Pg. 4
4. Solving First Order Differential Equations	Pg. 6
1. The Method of Separation of Variables	U
Example	
2a. Homogeneous Equations	Pg. 7
Examples 1 and 2	Pg. 8
2b. Equations That Reduce to Homogeneous	Pg. 9
Examples 1 and 2	Pg.11
3. The Exact Equation	Pg.13
Example 1	Pg.14
Example 2	Pg.15
Integrating Factor	Pg.16
4. The Linear Equation	Pg.17
Examples 1 and 2	Pg.18
5. The General Linear Equation	Pg.19
Example	
6. Linear Equation with Constant Coefficients	Pg.20
Example 1	Pg.21
Example 2	Pg.22
Examples 3 and 4	Pg.23
7. Linear Inhomogeneous Equation	
with Constant Coefficients	Pg.24
8. Finding the Particular Integral:	_
1. Method of Undetermined Coefficients	Pg.25
TYPE 1: $f(x) = a e^{bx}$	
Example 1	Pg.25
TYPE 2: $f(x) = a.cos(bx)$ or $a.sin(bx)$	Pg.26
Example 2	Pg.26
TYPE 3: $f(x) = a.x^p$	Pg.27
Example 3	Pg.27
Combination of Types: Example 4	Pg.28
2. Method of Variation of Parameters	Pg.30
Example	Pg.32

Workshop Task 0307: Differential Equations w/s

(Not Included on the Standard Edition CD.)

Differential Equations - Study Guide	2
THE D-OPERATOR COURSE	
$T\Delta SK (0308 (22 pages))$	
TASK 0500 (22 pages)	
1. Definition of the D-Operator	Pg. 2
Rules of Differentiation	
2. The Polynomial Operator F(D)	Pg. 3
Rule 1: $F(D)e^{CX} = F(c) e^{CX}$	
Example 1	
Rule 2: $F(D) \{ e^{CX} G(x) \} = e^{CX} F(D+c) G(x)$	
Example 2	
Rule 3: $F(D^2) \sin(cx) = F(-c^2) \sin(cx)$	
Example 3	
3. Definition of the Inverse Operator D ⁻¹	Pg. 3
4. Finding the Particular Integral	
using the D-Operator	Pg. 4
First Order Differential Equation	
Second Order Differential Equation 1	Pg. 5
Second Order Differential Equation 2	Pg. 6
Example	Pg. 8
5. Euler's Equation	Pg. 9
Example 1	Pg.10
Example 2	Pg.12
6. The General Linear Second Order Equation	Pg.14
Example 1	Pg.14
Example 2	Pg.15
Example 3	Pg.16
Standard Examination Type Questions:	
Question 1	Pg.17
Question 2	Pg.19
Question 3	Pg.20
Investigation 14: "Particular Integral"	Pg.22

For Simultaneous Differential Equations: Go To File 0308x

Differential Equations - Study Guide

Simultaneous Differential Equations Task 0308x (20 pages)

1. Simultaneous Differential Equations:

Example 1	Pg. 1
Example 2	Pg. 2

2. Standard Examination Questions:

Question 1	Pg. 4
Question 2	Pg. 5
Question 3	Pg. 7
Question 4	Pg.10
Question 5	Pg.12
Question 6	Pg.16
Question 6: Final Note	Pg.19

The Study Guide for Series Solutions of Differential Equations Course follows on the next page

Differential Equations - Study Guide

Series Solutions of Differential Equations Course Task 0309 (27 pages)

1. The Leibnitz-Maclaurin Method	Pg. 2
Example 1	Pg. 2
2. The Leibnitz-Taylor Method	Pg. 4
3. The Leibnitz-Maclaurin Method:	
Example 2	Pg. 5
4. The Method of Frobenius	Pg. 8
Definition of Points / The Series Solution.	
Example 1	Pg. 9
Example 2	Pg.13
5. Investigation 15: Frobenius Study	Pg.17
6. The Method of Frobenius:	
Example 3(a)	Pg.18
Example 3(b)	Pg.20
Example 4	Pg.24

Series Solutions of Famous Differential Equations

Task 0310B (14 pages)

Bessel's Equation

1. Bessel's Equation	Pg. 1
Solving by using the Method of Frobenius.	
Gamma Functions	Pg. 4
2. Bessel Function of the First Kind	Pg. 5
With Integer v	Pg. 6
3. Investigation 16: Bessel Functions	
"The Weber Function" (Part 1)	Pg. 7
4. The Bessel Functions: J ₀ (x) and J ₁ (x)	Pg. 7
5. Bessel Functions:	Pg. 8
Example 1	
6. Investigation 17: Bessel Functions	
"The Weber Function" (Part 2)	Pg. 9
7. Bessel Functions:	
Example 2a	Pg.11
Example 2b	Pg.12
Example 3: Expressing sin x & cos x	Pg.13
in terms of Bessel Functions.	

Differential Equations - Study Guide

Series Solutions of Famous Differential Equations

Task 0310C (11 pages)

Chebyshev's Equation

1. Chebyshev's Equation:	Pg. 1
Solving by using the Method of Frobenius.	
2. The Chebyshev Connection:	Pg. 4
Matching the Solution from the Method of Frobenius	
with Quoted Results.	
3. Chebyshev Polynomials	Pg. 8
Finding the First Ten Chebyshev Polynomials	
Tabulated Results	Pg.11
4. Investigation 18:	
"The Chebyshev Connection"	Pg.11
Derive the Summation Formula for the Odd n Series.	

Series Solutions of Differential Equations Used in Quantum Mechanics

Task 0310H (14 pages)

Hermite's Equation

1. Hermite's Equation:	Pg. 1
Solving by using the Method of Frobenius	
2. Hermite's Polynomials	Pg. 4
Finding the First Ten Hermite Polynomials	
Tabulated Results	Pg. 5
3. Rodrigues' Formula for the Hermite Polynomials	Pg. 6
4. Generating Hermite Polynomials using	
Rodrigues' Formula	Pg. 8
Generating the First Ten Hermite Polynomials	
Tabulated Results	Pg.11
5. Sigma Form of the Series Solution of Hermite's Eqn.	Pg.12
Even n Solution	
Odd n Solution	Pg.13
Summary of Results	Pg.14

Differential Equations - Study Guide

Series Solutions of Differential Equations Used in Quantum Mechanics

Task 0310La (9 pages)

Laguerre's Equation

1. Laguerre's Equation:	Pg. 1
Solving by using the Method of Frobenius	
2. Laguerre's Polynomials	Pg. 3
Generating the First Ten Laguerre Polynomials	
Tabulated Results	Pg. 5
3. Sigma Form of the Series Solution.	Pg. 5
4. Investigation 19: "Laguerre's Equation"	Pg. 5
5. Rodrigues' Form of the Laguerre Polynomials	Pg. 6
Proof that the Rodrigues Form is a Solution.	
Generating the First Ten Polynomials.	Pg. 7
Tabulated Results	Pg. 9

Task 0310L (18 pages)

Legendre's Equation

1. Legendre's Equation:	Pg. 1
Solving by using the Method of Frobenius	
2. Legendre Polynomials	Pg. 3
Generating the Polynomials for even L	Pg. 4
Generating the Polynomials for odd L	Pg. 5
Tabulated Results	Pg. 5
3. Rodrigues Formula for Legendre Polynomials	Pg. 6
Generating the Polynomials	Pg. 6
Tabulated Results	Pg. 8
4. Legendre's Equation: Examples	Pg. 9
Example 1a:	
Proof that the Rodrigues Form is a Solution.	
Example 1b	Pg.11
Example 1c	Pg.12
Example 1d	Pg.14
Example 2a: Transformation using $x = \cos\theta$	Pg.16
Example 2b	Pg.17

END OF THE STUDY GUIDE FOR SERIES SOLUTIONS OF DIFFERENTIAL EQUATIONS.