The Vulnavian Degree Network Level 1

Limits and Series - Study Guide

Task 0284: Limits (12 pages)	
1. The Meaning of a Limit	(Pg.1)
2. Condition for a Limit to Exist	(Pg.1)
Example 1	(Pg.1)
3. Limit Theorems 1, 2, 3 and 4	(Pg.3)
Examples 1, 2 and 3	(Pg.4)
4. How a Limit is Approached	(Pg.5)
The Rate of Approach as $x \rightarrow 0$	
Case 1 / Examples 1 and 2	
Cases 2, 3 and 4	(Pg.6)
The Rate of Approach as $x \rightarrow \infty$	(Pg.7)
Cases 1, 2 & 3 / Examples 1 & 2	
5. How a Limit is Approached	(Pg.8)
The Direction of Approach	
Example	
6. DIFFERENTATION:	
Finding the Gradient of a Curve	(Pg.9)
Examples 1 & 2	(Pg.10)
7. The Product Rule	(Pg.11)
8. The Quotient Rule	(Pg.12)

Workshop	Task	0285:	Limits	(6 pages)

<u>Task 0286</u> : Calculus (14	pages)		
1. Stationary Points	(Pg.1)		
Example: $y = x^{X}$			
INVESTIGATION 1:	(Pg.2)		
"Strings of Indices"	(- 8)		
2. Leibnitz's Theorem	(Pg.3)		
Examples	(Pg.4)		
3. Applying Leibnitz's Form			
to Differential Equations			
4. Integration	(Pg.6)		
Integration by Parts	× 0 /		
The Riemann Definite In	tegral		
5. Improper Integrals	(Pg.6)		
(a) Infinite Range			
Example	(Pg.7)		
Test of Convergence			
Examples 1 and 2			
(b) When The Integrand	(Pg.8)		
Becomes Infinite			
Example			
Integrand Infinite at Upper Limit			
Integrand Infinite at a Poir	nt		
within the Range.			
6. Test of Convergence and	(Pg.9)		
The Order of Infinity			
Example			
7. The Cauchy Principal Va			
Example 1	(Pg.9)		
Example 1	(Pg.10)		
Example 2 8 Applying Integration by Pe	(Pg.12)		
8. Applying Integration by Parts to Solve an Improper Integral			
to solve an improper integ	(Pg.13)		
Example	(1 5.15)		
INVESTIGATIONS:	(Pg.14)		
2. "Infinite Coscillations"	(1 5.1 1)		
3. "Sinc or Swim"			
Workshop Task 0287:			
Calculus w/s			

(Not Included on the Standard Edit CD.)

The Vulnavian Degree Network Level 1

Limits and Series - Study Guide

Task 0288: Series (7 pages) Task 0290: Further Series (17 pages) 1. The Sum to Infinity 1. d'Alembert's Ratio Test (Pg.1) (Pg.1) Proof Example 2. Geometric Series Examples 1, 2 and 3 (Pg.2) (Pg.2) 3. Addition of Terms to a Series 2. Cauchy Root Test (Pg.2) (Pg.3) Series of Positive Terms **3. Cauchy Integral Test** (Pg.3) 4. The Comparison Test (Pg.3) **Proof** for Convergence: Proof 4. Cauchy Integral Test: **Analytic Proof** Examining Series Behaviour (P.5) (Pg.4) Example Divergent Case / Convergent Case 5. The Harmonic Series (Pg.5) **Summary** (Pg.6) **INVESTIGATION 4: Cauchy Integral Test:** "Harmonic Groups" (Pg.5) Example 1 (Pg.6) 6. The p - Series (Pg.6) Examples 2 and 3 (Pg.7) 7. The Ratio Comparison Test (Pg.7) Example 4 (Pg.8) **INVESTIGATION 5:** Example (Pg.8) "The Euler Constant" Workshop Task 0289: **5. Alternating Series** (Pg.9) Series w/s Example (Pg.9) (Not Included on the Standard Edition CD.) 6. Absolute Convergence (Pg.9) Example 1 (Pg.9) Examples 2, 3 and 4 (Pg.10) 7. The Product of Two Series: (Pg.11) **The Cauchy Product** 8. Rearranging the Terms (Pg.11) of a Series. Example (Pg.11)

The Study Guide for the Power Series Course follows on the next page

The Vulnavian Degree Network Level 1

POWER SERIES TUTORIAL COURSE (TASK 0291)

0. Power Series: Application	Pg. 1
1. The Maclaurin Series	Pg. 2
Examples:	Pg. 3
Find the series for $f(x) = \cos x$	
Evaluate cos 30°	
MATHCAD Exercise	Pg. 4
Develop the Cosine Series	
2. Taylor's Series	Pg. 5
The Remainder Term	Pg. 5
Example: Evaluate cos 31°	Pg. 6
3. Power Series Convergence	Pg.7
Convergence Condition	U U
Radius of Convergence	
Example 1: Exponential Series	
Example 2: Binomial Expansion	Pg. 8
Example 3: Convergence Interval	C
4. Standard Expansions	Pg. 9
Example 1: Expand $f(x) = \log_e(1)$	+ x)
Example 2: Expand $f(x) = \tan^{-1}x$	Pg. 10
Using the tan ⁻¹ x series to find π	Pg. 11
INVESTIGATION 6 : " π Series"	0
5. Hyperbolic Functions	Pg. 12
6. Differentiation of Series	Pg. 13
7. The Inverse Sinh Function	Pg. 15
INVESTIGATION 7 :	Pg. 16
"Factorial Multiples"	1 5. 10
Example: Evaluate sinh ⁻¹ 1	Pg. 17
The Inverse Sinh Formula	Pg. 18
<u>Exercise</u> : Series for cosh ⁻¹ x	Pg. 20
8. Using Differential Coefficients	Pg. 20
9. L'Hopital's Rule	Pg. 24
Example 1: lim $log_e(1 + x)$	Pg. 25
$\begin{array}{c} \text{Lxample 1. Infi } \underline{\log_e(1+x)} \\ x \rightarrow 0 \qquad x \end{array}$	1 g. 25
Example 2: lim $\cos x - 1$	Pg. 25
$x \rightarrow 0$ x^2	- 80
Example 3: $\lim_{x \to a} x^2$	Pg. 26
$x \rightarrow \infty exp(x^2)$	- 00
Example 4. Series Method	Pg. 26
Example 7. Series Method	1 5. 20
Workshop Tosk 0202 (11	Dogoo)

Workshop Task 0292:(11 Pages)L'Hopital's Rule / $(\sinh^{-1}x)^2$ Series

INVESTIGATION 8: "Dark Shine Squared" (Pg.9) **INVESTIGATION 9**: "Double Vision" (Pg.9)

END OF THE STUDY GUIDE FOR LIMITS AND SERIES