1. Types of Number.
$\left\{3.14159,0, \pi^{2}, 0 . \dot{4} \dot{5}, \sqrt{-2}, \frac{2}{7}, \sqrt{20.25}, 3^{3}, \sqrt{5.9}\right\}$
From the above set of numbers, list;
(a) the integers: $0,3^{3} \quad$ (2 marks)
(b) the rational numbers: $3.14159,0 . \dot{4} \dot{5}, \frac{2}{7}, \sqrt{20.25} \quad$ (4 marks)
[Note: $0 . \dot{4} \dot{5}=\frac{45}{99}$ and $\sqrt{20.25}=4.5$]
(c) the irrational numbers: $\pi^{2}, \sqrt{ } 5.9 \quad$ (2 marks)
(d) the imaginary number: $\sqrt{ }-2$ (1 mark)

2. Factors, Multiples and Primes.

(a) List the factors of 180
$\{1,2,3,4,5,6,9,10,12,15,18,20,30,36,45,60,90,180\}$
(1 mark per 6 factors. Total $=3$ marks)
Identify the prime factors: 2,3 , and 5 (1 mark, with no extras.)
(b) Write 180 as a product of its primes using index notation;

Choose $10 \times 18=180$ (for example)
$10=2 \times 5$ and $18=2 \times 9=2 \times 3 \times 3$
So, $(2 \times 5) \times(2 \times 3 \times 3) \equiv 2^{2} \times 3^{2} \times 5=180$
Therefore, $2^{2} \times 3^{2} \times 5=180 \quad$ (3 marks)
(c) What is the lowest common multiple of the numbers: $1,2,3,4,5$ and 6 ?

Deduce the result: $\quad 2$ and 3 are factors of 6 and 4 and 5 are factors of 20

So the result is the same as the lowest common multiple of 6 and 20. That is, 60. (1 mark)

3. NEGATIVE INDICES:

Simplify the following leaving your final answers with positive indices only.
(a) $b^{-3} \times b^{-6}=b^{-3+(-6)}=b^{-3-6}=b^{-9}=\frac{1}{b^{9}} \quad(1$ mark $)$
(b) $5 d^{-2} \times 8 d^{-4}=40 d^{-2+(-4)}=40 d^{-6} \quad=\frac{40}{d^{6}} \quad(2$ marks $)$
(c) $4 v^{-5} \times 7 v^{2}=28 v^{-3}$

$$
=\frac{28}{v^{3}} \quad(2 \text { marks })
$$

3(d) $w^{-6} z^{3} \times 5 w z^{4}=5 w^{-5} z^{7}$
(e) $e^{9} \div e^{3}$
(f) $\mathrm{m}^{4} \div \mathrm{m}^{10}=\mathrm{m}^{-6}$
(g) $6 p^{3} \div p^{-8}=6 p^{3-(-8)}=6 p^{3+8}$
(h) $32 a^{-5} b^{3} c^{-4} \div 8 a^{2} b^{-7} c^{4}=4 a^{-7} b^{10} c^{-8}$
(i) $\left(3 a^{4}\right)^{-3}=3^{-3} a^{-12}=\frac{1}{3^{3} a^{12}}=\frac{1}{27 a^{12}}$
(j) $\left(\mathrm{p}^{5} \mathrm{qr}^{-4}\right)^{-5}=\mathrm{p}^{-25} \mathrm{q}^{-5} \mathrm{r}^{20}=\frac{\mathrm{r}^{20}}{\mathrm{p}^{25} \mathrm{q}^{5}}$
4. FRACTIONAL INDICES:

Simplify the following;
(a) $a^{\frac{1}{4}} \times a^{\frac{2}{3}}=a^{\frac{1}{4}+\frac{2}{3}}=a^{\frac{11}{12}}$
(b) $\mathrm{e}^{\frac{7}{12}} \times \mathrm{e}^{\frac{-1}{12}}=\mathrm{e}^{\frac{6}{12}}=\mathrm{e}^{\frac{1}{2}}$
(2 marks)
(c) $h^{\frac{4}{9}} \div h^{\frac{7}{9}}=h^{\frac{-3}{9}}=h^{\frac{-1}{3}}$
(2 marks)
(d) $b^{\frac{5}{8}} \div b^{\frac{3}{7}}=b^{\frac{5}{8}-\frac{3}{7}}=b^{\frac{11}{56}}$
(e) $\sqrt[5]{n^{\frac{10}{11}}}=\left(n^{\frac{10}{11}}\right) \frac{1}{5}=n^{\frac{2}{11}}$ (2 marks)

5. STANDARD FORM;

(a) Write 0.00000000525 in standard form Answer: 5.25×10^{-9} (2 marks)
(b) Write out 7.2×10^{-8} in full Answer: 0.000000072 (2 marks)

