The Vulnavian Degree Network Level 3

Partial Differential Equations - Study Guide

TASK 0311r(11 pages)

Review of Partial Differentiation: The Basics

PARTIAL DIFFERENTIAL EQUATIONS COURSE TASK 0311 (8 pages)

1. Introduction	(Pg. 1)
2. Second Order Constant Coefficient Equations	(Pg. 2)
3. Partial Differential Equation Classification:	(Pg. 2)
Elliptic Type / Parabolic Type / Hyperbolic Type	
Investigation 20: "Phantom Conics" (See 0311c))
4. Euler's Equation	(Pg. 3)
5. General Solution of Euler's Equation	(Pg. 3)
Elliptic & Hyperbolic Types	
Parabolic Type	(Pg. 6)
6. Euler's Equation: Examples	(Pg. 7)
Example 1: Laplace's equation in two variables:	
$\underline{\partial^2 \mathbf{u}} + \underline{\partial^2 \mathbf{u}} = 0$	
$\partial x^2 \qquad \partial y^2$	
Example 2: $3 \underline{\partial^2 u} + 4 \underline{\partial^2 u} + \underline{\partial^2 u} = 0$	(Pg. 7)
$\partial x^2 \partial x \ \partial y \partial y^2$	
Example 3: $16 \frac{\partial^2 u}{\partial x^2} + 8 \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x^2} = 0$	(Pg. 8)
$\partial \mathbf{x}^2 \partial \mathbf{x} \ \partial \mathbf{y} \partial \mathbf{y}^2$	

PARTIAL DIFFERENTIAL EQUATIONS: SEPARATION OF VARIABLES: TASK 0312 (22 pages)

1. Separation of Variables: The Wave Equation	(Pg. 1)
Boundary Conditions	(Pg. 3)
2. The Heat Conduction Equation	(Pg. 6)
Boundary Conditions	(Pg. 7)
Altered Boundary Conditions	(Pg. 9)
3. The Heat Conduction Equation: Examples	(Pg.11)
Example 1	(Pg.11)
Example 2	(Pg.13)
4. Partial Differentiatial Equations in 2D or 3D	(Pg.16)
The Laplacian Operator	
5. Laplace's Equation in 2D	(Pg.17)
6. Laplace's Equation in 2D: Example	(Pg.21)

The Vulnavian Degree Network Level 3

Partial Differential Equations - Study Guide

Partial Differential Equations Workshop 0313 (13 pages)

Partial Differential Equations:	(Pg. 1)
Question 1: $\frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \frac{\partial R}{\partial r}) = \frac{1}{c^2} \frac{\partial^2 R}{\partial t^2}$	
Question 2: $r^2 \frac{\partial^2 V}{\partial r^2} + r \frac{\partial V}{\partial r} + \frac{\partial^2 V}{\partial \theta^2} = 0$	(Pg. 2)
Question 3: $\frac{\partial^2 V}{\partial x^2} = \frac{\partial V}{\partial y}$	(Pg. 3)
Question 4a: $\frac{\partial^2 Z}{\partial x^2} = \frac{2}{a} \frac{\partial Z}{\partial t} + Z$	(Pg. 4)
Question 4b: $\frac{\partial Z}{\partial x} = -C \sec L \cos (L - x) \exp(-at)$	(Pg. 5)
Question 5a: $\frac{\partial^2 F}{\partial r^2} + \frac{2}{r} \frac{\partial F}{\partial r} = \frac{1}{c^2} \frac{\partial^2 F}{\partial t^2}$	(Pg. 6)
Question 5b: Proof of the Solution: $F(r, t) = \underline{1}(A \cos pr + B \sin pr) \cos \alpha r$	(Pg. 6) ot
Question 6: $\frac{\partial^2 \mathbf{V}}{\partial t^2} + \mathbf{V} - 4 \frac{\partial \mathbf{V}}{\partial \mathbf{x}} = 0$	(Pg. 8)
Question 7: $\frac{1}{c^2} \frac{\partial^2 V}{\partial t^2} = \frac{\partial^2 V}{\partial r^2} + \frac{1}{r} \frac{\partial V}{\partial r}$	(Pg. 10)
Question 7: Proof: Justification that $J_o(kr)$ is a solution of Bessel's equation with $v = 0$.	(Pg. 11)
Question 7: Proof: Justification that $J_o(kr)$ is a solution of Bessel's equation with $v = 0$: $J_o(kr)$ given in Sigma Form.	(Pg. 12)

END OF THE STUDY GUIDE FOR PARTIAL DIFFERENTIAL EQUATIONS.