The Vulnavian Degree Network Level 2

Partial Differentiation - Study Guide

PARTIAL DIFFERENTIATION: INTRODUCTORY COURSE Task 0293 (30 pages)

(Culminating in the Derivation of Laplace's Equation in Polar Coordinates.)

1. Functions of Several Independent Variables	Pg. 2
2. Continuity of Functions	Pg. 3
3. First Partial Derivatives	Pg. 4
Example 1: $f_1(x, y) = x^2 - 4y^2$	Pg. 5
Example 2: $f(x, y) = x + y \log_e x$	Pg. 6
Example 3: $f(r, \theta) = r \cos \theta$	Pg. 6
4. Functions of n Independent Variables	Pg. 6
5. Function of a Function	Pg. 7
Example 1: $f(x, y) = \tan^{-1}(y/x)$	Pg. 7
Example 2: $f(u) = \cos u$	Pg. 8
6. Higher Partial Derivatives	Pg. 9 -10
7. Total Derivatives (From First Principles)	Pg.10-11
Example: $f(x, y) = x^2 + y^2$ and $x = \cosh t$, $y = t^2$	Pg.12
8. Implicit Differentiation	Pg.12
Example 1a: $f(x, y) = \tan^{-1} y$ and $y = \cos x$	Pg.13
Example 1b: Check Ex.1a by Substitution	Pg.14
Finding dy & dz when $F(x,y,z) = 0$, $G(x,y,z) = 0$	0
dx dy	- 8
Example	Pg.17
Example 9. Higher Total Derivatives	Pg.17 Pg.18-19
-	-
9. Higher Total Derivatives	Pg.18-19
9. Higher Total Derivatives INVESTIGATION 10: "Wrong Way Round"	Pg.18-19 Pg.18
9. Higher Total Derivatives INVESTIGATION 10: "Wrong Way Round" The *D Operator	Pg.18-19 Pg.18 Pg.19
 9. Higher Total Derivatives INVESTIGATION 10: "Wrong Way Round" The *D Operator 10. Total Derivatives: Further Consideration 	Pg.18-19 Pg.18 Pg.19 Pg.20
 9. Higher Total Derivatives INVESTIGATION 10: "Wrong Way Round" The *D Operator 10. Total Derivatives: Further Consideration Example 1: f (x, y, z) = (sin²x)logey + z² 	Pg.18-19 Pg.18 Pg.19 Pg.20 Pg.20
 9. Higher Total Derivatives INVESTIGATION 10: "Wrong Way Round" The *D Operator 10. Total Derivatives: Further Consideration Example 1: f (x, y, z) = (sin²x)logey + z² Practical Example 1: Pendulum 	Pg.18-19 Pg.18 Pg.19 Pg.20 Pg.20 Pg.20 Pg.20
 9. Higher Total Derivatives INVESTIGATION 10: "Wrong Way Round" The *D Operator 10. Total Derivatives: Further Consideration Example 1: f (x, y, z) = (sin²x)log_ey + z² Practical Example 1: Pendulum Practical Example 2: Gas Law 	Pg.18-19 Pg.18 Pg.19 Pg.20 Pg.20 Pg.20 Pg.20 Pg.21
 9. Higher Total Derivatives INVESTIGATION 10: "Wrong Way Round" The *D Operator 10. Total Derivatives: Further Consideration Example 1: f (x, y, z) = (sin²x)log_ey + z² Practical Example 1: Pendulum Practical Example 2: Gas Law 11. Homogeneous Functions 	Pg.18-19 Pg.18 Pg.19 Pg.20 Pg.20 Pg.20 Pg.20 Pg.21
 9. Higher Total Derivatives INVESTIGATION 10: "Wrong Way Round" The *D Operator 10. Total Derivatives: Further Consideration Example 1: f (x, y, z) = (sin²x)log_ey + z² Practical Example 1: Pendulum Practical Example 2: Gas Law 11. Homogeneous Functions Example 1: f (x, y, z) = x² + y² - z² + xy 	Pg.18-19 Pg.18 Pg.19 Pg.20 Pg.20 Pg.20 Pg.20 Pg.21
9. Higher Total Derivatives INVESTIGATION 10: "Wrong Way Round" The *D Operator 10. Total Derivatives: Further Consideration Example 1: f (x, y, z) = $(\sin^2 x)\log_e y + z^2$ Practical Example 1: Pendulum Practical Example 2: Gas Law 11. Homogeneous Functions Example 1: f (x, y, z) = $x^2 + y^2 - z^2 + xy$ Example 1: f (x, y) = $\frac{x^2 + y^2}{4xy} + \cos(\frac{y}{2})$ 12. Euler's Theorem: Proof	Pg.18-19 Pg.18 Pg.19 Pg.20 Pg.20 Pg.20 Pg.20 Pg.21
9. Higher Total Derivatives INVESTIGATION 10: "Wrong Way Round" The *D Operator 10. Total Derivatives: Further Consideration Example 1: f (x, y, z) = $(\sin^2 x)\log_e y + z^2$ Practical Example 1: Pendulum Practical Example 2: Gas Law 11. Homogeneous Functions Example 1: f (x, y, z) = $x^2 + y^2 - z^2 + xy$ Example 1: f (x, y) = $\frac{x^2 + y^2}{4xy} + \cos(\frac{y}{4xy})$	Pg.18-19 Pg.18 Pg.19 Pg.20 Pg.20 Pg.20 Pg.20 Pg.21 Pg.23
9. Higher Total Derivatives INVESTIGATION 10: "Wrong Way Round" The *D Operator 10. Total Derivatives: Further Consideration Example 1: f (x, y, z) = $(\sin^2 x)\log_e y + z^2$ Practical Example 1: Pendulum Practical Example 2: Gas Law 11. Homogeneous Functions Example 1: f (x, y, z) = $x^2 + y^2 - z^2 + xy$ Example 1: f (x, y) = $\frac{x^2 + y^2}{4xy} + \cos(\frac{y}{2})$ 12. Euler's Theorem: Proof	Pg.18-19 Pg.18 Pg.19 Pg.20 Pg.20 Pg.20 Pg.21 Pg.23 Pg.23
9. Higher Total Derivatives INVESTIGATION 10: "Wrong Way Round" The *D Operator 10. Total Derivatives: Further Consideration Example 1: f (x, y, z) = $(\sin^2 x)\log_e y + z^2$ Practical Example 1: Pendulum Practical Example 2: Gas Law 11. Homogeneous Functions Example 1: f (x, y, z) = $x^2 + y^2 - z^2 + xy$ Example 2: f (x, y) = $\frac{x^2 + y^2}{4xy} + \cos(\frac{y}{2})$ 4xy x 12. Euler's Theorem: Proof Example: f (x, y, z) = $x^2 + y^2 - z^2 + xy$	Pg.18-19 Pg.18 Pg.19 Pg.20 Pg.20 Pg.20 Pg.21 Pg.23 Pg.23
9. Higher Total Derivatives INVESTIGATION 10: "Wrong Way Round" The *D Operator 10. Total Derivatives: Further Consideration Example 1: f (x, y, z) = $(\sin^2 x)\log_e y + z^2$ Practical Example 1: Pendulum Practical Example 2: Gas Law 11. Homogeneous Functions Example 1: f (x, y, z) = $x^2 + y^2 - z^2 + xy$ Example 2: f (x, y) = $\frac{x^2 + y^2}{4xy} + \cos(\frac{y}{2})$ 4xy x 12. Euler's Theorem: Proof Example: f (x, y, z) = $x^2 + y^2 - z^2 + xy$ 13. Change of Variables	Pg.18-19 Pg.18 Pg.19 Pg.20 Pg.20 Pg.20 Pg.21 Pg.23 Pg.23 Pg.24 Pg.25 Pg.26

The Vulnavian Degree Network Level 2

Partial Differentiation - Study Guide

Task 0294: Taylor's Theorem (4 pa	iges)
1. Taylor's Theorem for Functions of Two Independent Variables	(Pg.1)
INVESTIGATION 11: "The Lagrange	Term"
2. Proof of the Series Expansion	(Pg.2)
for the Function f $(a + h, b + k)$	
3. Taylor's Series Using Sigma Notation	(Pg.2)
4. Alternative Form of Taylor's Series	(Pg.2)
5. Taylor's Series for Functions of	(Pg.3)
Two Independent Variables:	
Example 1: $f(x, y) = \cos xy$	(Pg.3)
Example 2: Gas Law Application	(Pg.4)
Task 0295: Stationary Points in 2-D ((7 pages)
1. Maxima and Minima of Functions of Two Variables.	(Pg.1)
2. Maximum Condition.	(Pg.1)
Condition for a Point (x, y, z) to be a	(Pg.1)
Stationary Point	
3. Minimum Condition.	(Pg.2)
Condition for a Stationary Point.	(Pg.2)
4. How to Determine the Nature of a	(Pg.3)
Stationary Point Using Taylor's Serie	
5. Definition of Delta:	(Pg.4)
$\Delta = f^{2}_{XY}(a,b) - f_{XX}(a,b)f_{YY}(a,b)$	
6. Saddle Points	(Pg.5)
INVESTIGATION 12:	(Pg.5)
"Delta Zero" - Investigate $\Delta = 0$ cases.	
7. Saddle Points: Contour Plot	(Pg.6)
8. Stationary Points:	(Pg.6)
Example 1: $f(x, y) = \frac{1}{2}x^2 + y^2 + xy + x$	
Task 0295x: Stationary Points in 2-D	(4 pages)

8. Stationary Points: (Pg.1) Example 2: $f(x, y) = \frac{x^2y^2}{4} - \frac{x^2}{2} + 1$ Example 3: $f(x, y) = xy^2 - 2xy + 2x^2 - 3x$ (Pg.3)

INVESTIGATION 13: "Inflexion Surfaces (Pg.4)

Workshop Task 0296: Stationary Points in 2-D (Not Included on the Standard Edition CD.)

The Vulnavian Degree Network Level 2

Partial Differentiation - Study Guide

Task 0297:Conditional Points and Lagrange Multipliers	9 pages)
1. Conditional Stationary Points	(Pg.1)
Example 1: $f(x, y, z) = x + y^2 + z^2$	
Example 2: $f(x, y, z) = x^2 y^2 z^2$	(Pg.2)
Contour Plot	(Pg.3)
2. Lagrange Method of Undetermined	(Pg.5)
Multipliers	-
3. Example 1:	(Pg.6)
Minimum Distance from $(0, 0)$ to a curve	
4. Example 2:	(Pg.8)
Minimum Distance from $(0, 0)$ to the	-
Rectangular Hyperbola $xy = c^2$	

END OF THE STUDY GUIDE FOR PARTIAL DIFFERENTIATION